Journal of Organometallic Chemistry, 187 (1980) 103–105 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE VAPOR PRESSURE AND BOILING POINT OF HYDRIDOCOBALT TETRACARBONYL, $HC_0(CO)_4$

JEROME A, ROTH * and MILTON ORCHIN **

Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221 (U.S.A.)

(Received August 17th, 1979)

Summary

From vapor partial pressure measurements of $HCo(CO)_4$ swept out of decane solution with CO, the normal boiling point of $HCo(CO)_4$ is estimated to be $47 \pm 3^{\circ}C$.

Introduction

In connection with our studies [1] on the stoichiometric hydroformylation of formaldehyde with hydridocobalt tetracarbonyl we noted that the vapor pressure of HCo(CO)₄ appeared to be less than anticipated. Solid HCo(CO)₄ has been reported to melt at between -26.2 [2] and -33° C [3] but immediately upon melting the liquid decomposes and hence the boiling point of the liquid has never been reported. However, careful measurements of the vapor pressure of solid HCo(CO)₄ have been performed [2] in the temperature range of -29to -37° C. Extrapolation of these data leads to an estimated boiling point of about 10°C for HCo(CO)₄ [4] compared to 43 and 103°C for Ni(CO)₄ and Fe(CO)₅, respectively. We wish to report data obtained by the transpiration method which we believe lead to a better estimate of the vapor pressure of HCo(CO)₄ above its melting point as well as its boiling point at atmospheric pressure.

Results and discussion

 $HCo(CO)_4$ was prepared as a solution in decane, and the concentration immediately determined as previously described [5]. About 20 ml of this solution was placed in a thermostatted trap. A second trap, containing pure hexane,

^{*} Present address: Chemistry Department, Northern Michigan University, Marquette, MI 49855

⁽U.S.A.).

^{**} To whom correspondence concerning this article should be addressed.

was placed in series with the first and was maintained at -78° C (dry-ice/acetone temperature). Dry CO was bubbled through the system at a constant flow rate, trapping the HCo(CO)₄ in hexane. The concentration of the hexane solution was determined periodically by titration [5] and plotting these data showed a first order rate of loss of HCo(CO)₄ from decane. The vapor pressure of the original solution was then calculated, assuming ideal gas behavior for HCo(CO)₄. The results at two temperatures are shown in Table 1. Using the two vapor pressure values, and assuming ideal solution behavior [6] a boiling point of approximately 47°C is predicted for pure HCo(CO)₄ at 760 Torr. Employing Trouton's Rule [6] such a boiling point would lead to a heat of vaporization of 6.7 kcal/mol.

In order to verify the boiling point prediction, cyclopentane (b.p. 50° C) was employed as a solvent for HCo(CO)₄ and CO gas passed through the solution at 25° C. Assuming ideal solution behavior, both the gas phase and solution phase should have very similar concentrations. After about one-third of the original solution had been collected in an empty trap cooled to -78° C, the concentration of the remaining solution and the trapped gas phase were determined to be 0.0528 and 0.0540 *M*, respectively. Since the original solution is slightly depleted in HCo(CO)₄ compared to the condensed vapor, it thus appears that HCo(CO)₄ is slightly more volatile than cyclopentane, consistent with its predicted behavior.

In order to reduce possible deviations from ideal behavior, a solution of $HCo(CO)_4$ in $Ni(CO)_4$ was prepared. A stream of CO was passed over 10 ml of this solution and after about a third of the original volume had been evaporated it was found that the original concentration of $0.105 M HCo(CO)_4$ in $Ni(CO)_4$ had been increased to 0.128 M indicating that $Ni(CO)_4$ is somewhat more volatile than $HCo(CO)_4$. From these rather crude measurements we estimate that the boiling point of $HCo(CO)_4$ is probably $47 \pm 3^{\circ}C$.

Because the vapor pressure appears to be lower and the boiling point of HCo-(CO)₄ higher than previously estimated, the possibility of solution dimers of HCo(CO)₄ was suspected. However, molecular weight determinations in benzene and in cyclohexane by freezing point depression [7], gave correct values, $\pm 7\%$, for the monomeric form.

T (°C)	CO (ml/min)	$[(HCo(CO)_4)] \times 10^{-2}$		Rate of vapor ^a (X 10 ⁻³ mmol/min)	Total ^b pressure	P_{v}^{c}
		Initial	Mol fract.		pressure	
0.0	57.6	5.28	1.02	3.02	796	0.852
22.0	68.2	5.13	0.978	9,75	806	2.48

^a This rate of vaporization is the initial rate of loss of HCo(CO)₄ obtained by extrapolation from rate data, $\pm 2\%$. ^b System pressure in torr. ^c Vapor pressure of HCo(CO)₄ in torr calculated from (ml of HCo(CO)₄)/ (ml of CO) X 760.

TABLE 1

References

- 1 J.A. Roth and M. Orchin, J. Organometal. Chem., 172 (1979) C27.
- 2 W. Hieber and H. Schulen, Z. Anorg. Chem., 232 (1937) 29; this is an average of five determinations.
- 3 A. Blanchard and P. Gilmont, J. Amer. Chem. Soc., 62 (1940) 1192.
- 4 J.W. Rathke and H.M. Feder, J. Amer. Chem. Soc., 100 (1978) 3623 also estimated (without explanation) a boiling point of about 10°C.
- 5 J.A. Roth and M. Orchin, J. Organometal. Chem., submitted.
- 6 A.W. Adamson, A Textbook of Physical Chemistry, Academic Press, New York, 1973.
- 7 A. Weissberger (Ed.), Technique of Organic Chemistry, Interscience, New York, 1949.